Use of Cell-SELEX to Generate DNA Aptamers as Molecular Probes of HPV-Associated Cervical Cancer Cells
نویسندگان
چکیده
BACKGROUND Disease-specific biomarkers are an important tool for the timely and effective management of pathological conditions, including determination of susceptibility, diagnosis, and monitoring efficacy of preventive or therapeutic strategies. Aptamers, comprising single-stranded or double-stranded DNA or RNA, can serve as biomarkers of disease or biological states. Aptamers can bind to specific epitopes on macromolecules by virtue of their three dimensional structures and, much like antibodies, aptamers can be used to target specific epitopes on the basis of their molecular shape. The Systematic Evolution of Ligands by EXponential enrichment (SELEX) is the approach used to select high affinity aptamers for specific macromolecular targets from among the >10(13) oligomers comprising typical random oligomer libraries. In the present study, we used live cell-based SELEX to identify DNA aptamers which recognize cell surface differences between HPV-transformed cervical carcinoma cancer cells and isogenic, nontumorigenic, revertant cell lines. METHODOLOGY/PRINCIPAL FINDINGS Whole-cell SELEX methodology was adapted for use with adherent cell lines (which we termed Adherent Cell-SELEX (AC-SELEX)). Using this approach, we identified high affinity aptamers (nanomolar range K(d)) to epitopes specific to the cell surface of two nontumorigenic, nontumorigenic revertants derived from the human cervical cancer HeLa cell line, and demonstrated the loss of these epitopes in another human papillomavirus transformed cervical cancer cell line (SiHa). We also performed preliminary investigation of the aptamer epitopes and their binding characteristics. CONCLUSIONS/SIGNIFICANCE Using AC-SELEX we have generated several aptamers that have high affinity and specificity to the nontumorigenic, revertant of HPV-transformed cervical cancer cells. These aptamers can be used to identify new biomarkers that are related to carcinogenesis. Panels of aptamers, such as these may be useful in predicting the tumorigenic potential and properties of cancer biopsies and aid in the effective management of pathological conditions (diagnosis, predicted outcome, and treatment options).
منابع مشابه
Development of RNA aptamers as molecular probes for HER2+ breast cancer study using cell-SELEX
Objective(s): Development of molecules that specifically recognize cancer cells is one of the major areas in cancer research. Human epidermal growth factor receptor 2 (HER2) is specifically expressed on the surface of breast cancer cells. HER2 is associated with an aggressive phenotype and poor prognosis. In this study we aimed to isolate RNA aptamers that specifically bind to HER2 overexpressi...
متن کاملGenerating aptamers for recognition of virus-infected cells.
BACKGROUND The development of molecular probes capable of recognizing virus-infected cells is essential to meet the serious clinical, therapeutic, and national-security challenges confronting virology today. We report the development of DNA aptamers as probes for the selective targeting of virus-infected living cells. METHODS To create aptamer probes capable of recognizing virus-infected cell...
متن کاملAptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples.
BACKGROUND Molecular-level differentiation of neoplastic cells is essential for accurate and early diagnosis, but effective molecular probes for molecular analysis and profiling of neoplastic cells are not yet available. We recently developed a cell-based SELEX (systematic evolution of ligands by exponential enrichment) strategy to generate aptamers (designer DNA/RNA probes) as molecular probes...
متن کاملEvolution of a gastric carcinoma cell-specific DNA aptamer by live cell-SELEX.
Aptamers have emerged as promising molecular probes for disease diagnosis and therapy. In the present study, the entire live cell-SELEX method was used to generate gastric cancer cell‑specific aptamers. Human gastric carcinoma AGS cells were used as target cells for positive selections and human normal gastric epithelial GES-1 cells as the negative cells for counter selections. The selection pr...
متن کاملStudy of the Molecular Recognition of Aptamers Selected through Ovarian Cancer Cell-SELEX
BACKGROUND Ovarian cancer is the most lethal gynecological malignancy, and the ovarian clear cell carcinoma subtype (OCCA) demonstrates a particularly poor response to standard treatment. Improvements in ovarian cancer outcomes, especially for OCCA, could be expected from a clearer understanding of the molecular pathology that might guide strategies for earlier diagnosis and more effective trea...
متن کامل